Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Chem Biodivers ; 18(11): e2100674, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1615945

ABSTRACT

Chemical investigation on a Streptomyces sp. strain MS180069 isolated from a sediment sample collected from the South China Sea, yielded the new benzo[f]isoindole-dione alkaloid, bhimamycin J (1). The structure was determined by extensive spectroscopic analysis, including HRMS, 1D, 2D NMR, and X-ray diffraction techniques. A molecular docking study revealed 1 as a new molecular motif that binds with human angiotensin converting enzyme2 (ACE2), recently described as the cell surface receptor responsible for uptake of 2019-CoV-2. Using enzyme assays we confirm that 1 inhibits human ACE2 79.7 % at 25 µg/mL.


Subject(s)
Alkaloids/chemistry , Geologic Sediments/microbiology , Isoindoles/chemistry , Streptomyces/chemistry , Alkaloids/metabolism , Alkaloids/pharmacology , Alkaloids/therapeutic use , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/virology , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Isoindoles/isolation & purification , Isoindoles/metabolism , Isoindoles/pharmacology , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Docking Simulation , SARS-CoV-2/isolation & purification , Streptomyces/isolation & purification , Streptomyces/metabolism , COVID-19 Drug Treatment
2.
ACS Appl Mater Interfaces ; 13(19): 22262-22270, 2021 May 19.
Article in English | MEDLINE | ID: covidwho-1221187

ABSTRACT

The coronavirus disease 2019 (COVID-19) can present a similar syndrome to an influenza infection, which may complicate diagnosis and clinical management of these two important respiratory infectious diseases, especially during the peak season of influenza. A rapid and convenient point-of-care test (POCT) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus is of great importance for prompt and efficient control of these respiratory epidemics. Herein, a multichannel electrochemical immunoassay (MEIA) platform was developed based on a disposable screen-printed carbon electrode (SPCE) array for the on-site detection of SARS-CoV-2 and A(H1N1). The developed MEIA was constructed with eight channels and allowed rapid detection on a single array. On the SPCE surface, monoclonal antibodies against influenza A(H1N1) hemagglutinin (HA) protein or SARS-CoV-2 spike protein were coated to capture the target antigens, which then interacted with a horseradish peroxidase (HRP)-labeled detection antibody to form an immuno-sandwich complex. The results showed that the MEIA exhibited a broader linear range than ELISA and comparable sensitivity for A(H1N1) HA and SARS-CoV-2 spike protein. The detection results on 79 clinical samples for A(H1N1) suggested that the proposed MEIA platform showed comparable results with ELISA in sensitivity (with a positive rate of 100% for positive samples) but higher specificity, with a false-positive rate of 5.4% for negative samples versus that of 40.5% with ELISA. Thus, it offers great potential for the on-the-spot differential diagnosis of infected patients, which would significantly benefit the efficient control and prevent the spread of these infectious diseases in communities or resource-limited regions in the future.


Subject(s)
Biosensing Techniques/methods , COVID-19/diagnosis , Electrochemical Techniques/methods , Immunoassay/methods , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/diagnosis , SARS-CoV-2/isolation & purification , Humans , Point-of-Care Testing , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL